—Chapter 6—

The Magnetic
Field and Vector
Potential
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6-1 Magnetic Field and Ampére's Law

A. LORENTZ FORCE

(1) Observing two wires running parallel to one another and carrying

currents in the same direction
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The two sections of wire tend to fly together. The force which depends
only on the charge movement in the wires, that is, on the two currents

are called magnetic.

(2) Observing the motion of a free charged particle, instead of a wire

carrying current

In the lab frame, the electric field E = 0. With the charge ¢ moving
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with velocity v in the potisitive x direction, the force, according to
Coulomb's law and special relativity, on it was in the negative y
direction, with magnitude:

S vl

P Hoqul

- 2nr
Since an electric current has associated with it a magnetic field that

pervades the surrounding space. Any moving charged particle that
finds itself in this field, experiences a force proportional to the strength
of the magnetic field in that locality. Since the force is perpendicular to
the velocity, ¥ L (—9), we found that

XXZ=-y
Thus, we have

U =vxk

B=B2
and can obtain the force

F= qv(%i—i) (—9) = qvz xg—;éz“ =q¥xB
where

= Mol

P =om? . )
We shall take F = qv X B as the definition of B.

EXAMPLES:
1. The magnetic force between parallel wires carrying current.

The magnetic field of a straight wire of filament of steady
current:
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The field lines are circles surrounding the filament.
toly

2nr
The field direction is everywhere perpendicular to the plane

containing the filament. The magnitude of the field is

1=

proportional to 1/7.

Current I; produces magnetic field B; at conductor 2. The force

on a length [ of conductor 2 is given by

qz! Uol1 131
q2V25, At D1 2Dq or
(3) Since boosted electric fields must give rise to magnetic fields. Thus, in

general, a charged particle, in our frame, moving with velocity ¥, the
force on the particle is

F=qE+qbxB
The force is called the Lorentz force.

EXAMPLES:
1. Show that the magnetic forces do no work.
ANSWER:

A charged particle ¢ moves an amount dl = %dt in the presence

of a magnetic field B. The work done is
aw = F-al = q(% xB) - at
Since v - (1‘5 X ﬁ) = 0, we obtain dW =0

B. AMPERE'S LAW

(1) Since the E lines curling clockwise, we can look at the line integral of B
around a closed path in this field.
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It is valid for steady current. Ampére's law states that the line integral
of the magnetic field around a closed loop is proportional to the

current passing through the loop.

NOTE:
We can't apply Ampére's law to isolated finite segments of
current-carrying wire. Such finite segments can't exist by
themselves, and Ampére's law relies on the full circuit to work.
Without the full circuit, by choosing different surfaces bounded
by the amperian loop, you can get contradictory results.

Take any closed curve C in a region where currents are flowing.

e %

.
The total current enclosed by C is the flux through the surface
spanning C:

j£§~d§=u0ff~d&
¢ S
Using Stokes' theorem:

£B~d§=L(VxB)~d&

Thus, we obtain
VxB = .Uoi

For a given f , the magnetic field B is not uniquely determined by
VxB= .Uof
According to the Helmholtz theorem, we need another condition: we

can look at the surface integral of B around a closed area in this field.
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It is enough to note that the volumes V; and V, have no net flux.
Then, using Gauss's divergence theorem, we get

#E-da=fffv.§dr=o=>v-§=o
S v

Thus, as B goes to zero at infinitely, we have
VXB = Ilof ----- Ampére's law
V-B=0--- no name

and B is uniquely determined if f is given.

PROOF:
Suppose both equations are satisfied by two different fields §1 and Ez-
5 = §1 - EZ

UXD=VxXB,—VXBy,=po] —of =0=D =Vf
V-D=V-B,—-V-B,=0=2V-Vf =V2f =0
Since B, and B, go to zero at infinity (boundary), and
D=B,-B,=VYf=0
at the boundary. Thus, f takes on some constant value f, at the
boundary. Since Laplace's equation allows no local maxima or
minima—all extrema occur on the boundaries. So f must be the value
fo everywhere. Hence

B=Vf=0and§1=§2

EXAMPLES:
1. Use Ampeére's law to find the magnetic field of a long straight
wire.
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closed loop
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ANSWER:
- - 1
fB-dsT:des:qu-an:uOI:}»B=——¢

e e

. Use Ampére's law to find the magnetic field of a ring.

Y

closed loop

ANSWER:

For Ampére's law to be applicable, the magnetic field strength
should be tangent to the loop or normal to the loop. The
magnetic field of a ring changes magnitude as well as direction
relative to the loop. In this case, there would be no way to take
the B term out of the line integral, and then Ampére's law cannot
be used to determine the field along the loop.

. Use Ampére's law to find the magnetic field inside a long
solenoid.
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ANSWER:

The magnetic field is zero outside the solenoid and constant
inside the solenoid. Thus, along the rectangular loop, we obtain

f§~d§=3a=,u0nla=>3=,u0n1
e

. Finding the magnetic field inside a toroid.

Cylindrical symmetry ensures that B has only ¢p-component and

is constant along any circular path about the axis of the toroidal.

fB dS =By -2 = uoNI B = 0 s
. = . = = - —
: s ¢ 2T = U -
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6-2 Vector Potential

A. ELECTROSTATIC FIELD

(1) Recall that, for an electrostatic field, we have

v.E=P
€o
VXE=0

and E goes to zero at infinity. According to Helmholtz theorem, if p(r)
is given, the electric field Eis
E=-Vp+VxA4

where
1 ( V-E 1 p(r")
— . 3 ! d3 12
=) Tt T ame ) -7
. 1 [ VUXE
A= —i—fw—o
|7 -7

Thus, E is uniquely determined by

= —V(p
Where @ is called the potential.

(2) Except using the direct integral to obtain the potential, we can also
solve Poisson's equation or Laplace's equation with suitable boundary

conditions:
vE:v(—wﬂ:—W¢=ﬁ
€o
_r
Vip = o
VZp=0

B. MAGNETOSTATIC FIELD

(1) For a steady current, we have
V-B=0
VxEB = pyf
and B goes to zero at infinity. Comparison to the electrostatic field,

according to Helmholtz theorem, if f (F) is given, the magnetic field Bil
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B=-Vo+Vx4

where
1 ( V-B
@=—|7—7d%" =0
|7 — 7]
1= 1. _Vié 37-’ ﬂ_ _j_(?i)_d3 l
|77—17'| 4w |r—f~”|

Thus, B is uniquely determined by
B=Vx4
where 4 is called the vector potential.

(2) Physical interpretation of A
Using Gauss's divergence theorem, we obtain the flux of the magnetic

field B

#gﬁ-dd=ﬂfv(v-§)dr

Since the magnetostatic field is a solenoidal field, i.e., V - B= 0, the
total flux through the closed surface is zero. Thus, we have

ﬁgﬁ-d&=0
S

Consider two surfaces §; and §,:

Path A

Path B
Py

ﬂ§~dd+ﬂ B-di=0
[[ 7 [[ 50 =0

Thus, the surface mtegral is independent of the surface spanned by a

closed loop C,
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path A path B
Since
R P, P,
ffA d§=f A d§—f A-ds—jf (vx4)-d
c Py Py S
path A path B

thus, we obtain

B=vVx4

(3) Poisson's equation or Laplace's equation for A
Vx§=VxVxZ=V@uﬂ—Vﬁqu

) _L ) iy ae
VA= <Vr|7—?'|) J(7) d?r

L N L NPT
_47J< VT’|*—4'|> J(7)d3r

Since

Ho j(r f 3.7
=i 20 ———-V d
Lo )
__H _f(_?,)_..da
an JiJr— 7]

assume that the Gaussian surface is at infinity and the current ] (7‘"’)
goes to zero faster than 1/r? as r — oo. So the surface integral is zero.
Thus, we have

V-A=0
and obtain
V24 = —.Uof
V2A=0
EXAMPLES:

1. A spherical shell of radius R, carrying a uniform surface charge o,
is set spinning at angular velocity w. Find the vector potential it
produces at point 7.
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ANSWER:
The integration is easier if we let r lie on the z axis, so that w is
tilted at an angle .

—

> -
where K is the surface current and » = |r —R|,

# =+R2+12—2Rrcos 9’
da’ = R?sinf'd@’d¢’
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K =ov
=o@ xR
X y 4
= w siny 0 W cosyY
Rsinf'cos¢’ Rsinf'sin¢g’ Rcosh’
Since

2 2m
f sing’'d¢' = f cos¢p'dep’' =0

0 0
the terms involving either sin ¢’ or cos ¢’ contribute nothing.
Thus, we can simplify K as,
. x y Z
K=o0|wsiny 0 wcosy|=—0Rwsinypcosh'y

0 0 Rcosé@’

We obtain the vector potential as

- —0Rwsiny cosO'y
A=t V0S89 r2sing’ de'dy’

4w ) \JRZ + 12 — 2Rr cos @’
UoOR3w cos @’

= d(cos0)de's
= cos
4 VR2 +r2 — 2Rrcos 6’ Y

3 ,u00R3a)sin1/)f" cos @’
2 o VRZ+r

2 —2Rrcosb’
Letting u = cos 8’, the integral becomes

i ,uochSa)sim/JJ1 u
2 _1VR2 + 12 —2Rru

d(cos8")y

duy

Since

1 u
f du
~1VR2 + 12 — 2Rru
3 (R2+7r2—=Rr)(R+7)—(R>+712+Rr)|IR—r|

3R2%r2
2r
3 ﬁ—z, r<R
“ ) 2R
?E' r=2R

we have, finally,
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UooR3wsiny 2r UoORwW
. B Y T ——3——rsm1/)y, r<R
A=A
UooR3wsiny 2R UooR* wsiny _
T2 3T 3 2 0 TER
Since @ X 7 = —wrsiny P, we have
(
oR
R @x7), r<R
A= 1 4
HooR™ _,
3,3 (w X r), r=R

Now, we would like to revert to the "natural" coordinates in
which @ coincides with the z axis and the point r is at (7,8, ¢).
We then transform to the coordinates in which @ coincides with
the z axis:

oRw
EO—g——rsqu[) r<R

N

A= UooR*wsin@ _
——3—— _T'Z_ ¢, r=R
We obtain the magnetic field inside the spherical shell:
B=Vx4
1 1 . 1.
72sin6  rsind ;(b
0 0 0
| or 26 ¢
0 0 rsin @ EO—Z&Q rsinf
1 1 1.
=@0_R£ rzsianer rsir(;@t9 ;ad)
S| o 36 7%
0 0 r?sin? 0
ZMOGRw

_ (cos 01 —sinf 9)

= = n0Rw2
3 HooRwZ

The field inside the spherical shell is uniform.
We obtain the magnetic field outside the spherical shell:
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B=VxA

11 1.
rzsinGT rsin@ rd)
d 0 d
| or 26 96
_ ugoR*wsin®
0 0 rsin ————
3 r2
11 . 1.
rzsiner rsin @ r¢
woko| 00
T3 | or a6 a¢
sin? 0
0 o —
T
uoaRa)

—_— (2 cos@t + sinf 9)

. Find the vector potential of an infinite solenoid with n turns per
unit length, radius b, and current I.

ANSWER:

Using Stokes' theorem for the vector potential

£A-d§=L(VxA)-da=LB-da=cb

where @ is the flux of B through the loop.
L.H.S.

f/f-d§=A¢-2nr

15

R.H.S.:

f§~d&=umu@Tﬂ, r<b

fﬁ -dd = ponl(mb?), r>b

Thus, we obtain

—7— ¢), r<b
A= 2

l,lonl b ~

— P r=>b

The magnetic field is
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1 . 1.
;T ¢ ;‘Z
nl nild
M—Oz— 0 4d ad =M—02——a—‘r22=u0n1, r<b
ar 9¢ o0z ror
0 72 0
= 1, . 1,
2 rr 10) rZ 2
uonlb<ld o 0 uonlb=1 0
_ - — —=—=———1Z2=0 >h
2 |or 3¢ oz 2 ror o TS
1
0 r— O
\ r

Current flowing
in z direction

Outside the wire, what is the vector potential A?
ANSWER:

1. . 1.
;‘T 0 ;Z
. I . S dA, 04\ -
B=§)— =VxA=|a a o0 =<31—3—Z>9
T — = — z r
" or 96 oz
A, Ag A,
Due to the symmetry along the z axis, we can't have any z
dependence,
ol . 04, .
—fO0=——0
2mr ar
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S A, =— | —dr= ——ﬂ—lnr

5 I
> A= —Eo—lnri
2w

According to the Helmholtz theorem, B is uniquely determined,

not 4. 4 could be added any vector function with zero curl. For
example,

- > I
A- A= —%%lnrﬁ + Vf(7)
We obtain the magnetic field:

————

. i I I
B=Vxd=vx(-Emrz)+vxv=£g
21 2nr
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0-3 Biot-Savart Law

A. FIELD OF ANY CURRENT-CARRYING WIRE

(1) In many applications we are interested in determining the magnetic
field due to a current-carrying circuit. For a thin wire with cross-
section area a and current I, we have

I I
J=—=]d3r =—adl = Idl
a a

The vector potential at the point becomes

i= ](T - Ilolf
[~

[ =7

EXAMPLES:
1. A ring, with radius b, lies in the xy-plane (centered at the origin)
and carries a current I running counterclockwise. Find the vector
potential it produces at point r > b.
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\

~bd¢'sing' . Y 3

bd¢' cos¢

P A

ANSWER:
The vector potential of a ring can be written as

1
A= ﬂojg —dl' where 7 = |r—r|

dl' = —bd¢' sin ¢’ % + bde' cos ¢’ y
The symmetry of the ring indicates that the contribution of I dl’
in the y direction will cancel each other. Thus, we have

2
A= —%j %xsmd) bdg’ _EZ—?L S—mip-d¢¢
Since r > b, we have
1 1
7 \r2+4+b2-2rbcosa
1/ b® 2b 2
=;<1 +;5——r—51n951n¢’>
1/ 2b N2
z;(l—T-smGsmd))
1 b . L
x;+;551n951n¢ + -
The vector potential becomes
S polb (*™(1 b N
A:_47-[_ <;+;551n951n¢>51n¢ do'o
Uolb uolb? 1 2”_2, , =
_477_;J;, sing’ d¢p’ ¢ + _Er_r_zsme_]; sin“ ¢’ do’ ¢
=0 =T
Uolb?sinf .
==

Then, we obtain the magnetic field:
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B=VxA

1 .1 1.
rzsinGr rsin@ r¢
0 0 0
= or 00 f510)
0 0 - Ib? sin 6
r sin R
11 . 1.
rzsiner rsin @ r¢
Uolb? 3] il d
T4 | or a6 a¢
sin? @
0 0o —
r
1b? ~
= #—Zr—3—(2cost9f”+ sinHH)

B. THE BIOT-SAVART LAW

(1) The magnetic field is then

- N dl’ I 1 ,
F=vx4=t" vrx——=@-3§<vr—>xdl'
(64

i Je 7 4m 7
Since
1 7
T T
we get
S pol 7 L pol Al x
B= @-f ~ D) xar =2 ¢ =27 Biot-Savart Law
i Jo\ 7 i Jo r
(2) Sometimes it is convenient to express the equation in two steps
B=¢ap
¢
with
iE Cpoldl x & peldl' X 7
4w 2 4w B
EXAMPLES:

1. Find the magnetic field at a distance b from an infinite straight
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wire carrying a steady current I.

ANSWER:
= Mol J dl x #
" 4m r2

Consider a small piece of the wire at angle 8, subtending an angle

de,
P
b

If r is the distance from a given point P to the small piece, the
length of the piece is

rdd
0

dl

rdo
dlcosf =rdf = dl = ——
cos 6

Since b = r cos 8 we obtain
b/cos6 do _ bdo

dl = =
cos cos? 6
The magnetic field is

B ol f”/z bd®  cos@
C4m —n2€08% 6 (b/cos 6)? z
I /2
= for cos0doz
Mol |”/2
 4mb sin -m/2
_ Wl
2nth

. A spherical shell with radius R and uniform surface charge den
sity ¢ spins with angular frequency w around a diameter. Find

the magnetic field at the center.
ANSWER:
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Length di

The current produced by the ring is
dQ O'(R sin6 d¢)(Rd9)
Tdr ot -
dl = Rsinf d¢p¢
ol dlx R
Tn_j RZ
Uo 0R?w sin 6 dO . oA
= E’[—__RZ___J‘R sinf@d¢p P X R
UoORwsin20do .
- 4
UooRw sin? 6 do .
= 5 [4]
B, = f dB sin6

I = oR?*wsin 6 d6

dB =

oRw ™
=@7— sin3 0 do2

3. Find the magnetic field at a point on the axis of a ring of radius
b that carries a current .

b/
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ANSWER:
Method I:

Consider the field on the z-axis:

Each element of the ring of length dl contributes a dB
perpendicular to 7. The total field on the axis must point in the z
direction,

Idl
dB, = =dB cosf = ————cos A
41 12

Since
b =rcosf
we obtain

Idlb Ib
dB, === =B s

= 7 =
A r?r 4 13
So the field on the axis at any point z is

#01 bf , Mol b Holb?

o e =t Som =B
B, T 43 2r3
Method II:

The vector potential at any point is

j = tolb7sing

4 r?
The magnetic at any point is
Holb?

B:VXA=—E3—(2c0597“‘+sin99)

The magnetic field on the z-axis, i.e., 8 = 0:
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. The magnetic field of an infinite solenoid of current with radius b

oy

n turns/m [}

A\
\(\fg—___—_:; \ 4o rdé)\‘dl

'T ——— rdo ¢~ L]

—— sinf@

N —————— yo— | —»|

Consider the contribution from the current rings included
between radii from the point z that make angles 8 and 6 4+ d6
with the axis.

Kol b?
dB, = 573 ndl
The length of this segment of the solenoid is
rdf
dlsinf =rdf = dl = —
sin 6

Thus, we obtain
tolb®> 1d6  ponib*de

dB, = =

2= 23 "5in®  2rZsind
Since
b=rsinf
we obtain

nlrdf uor?sin? 6  ponl
B, = = i

4B, sin @ 2r3 2 ! 6 df

For the infinite solenoid we obtain

ponl
B, = |dB, = —sm9d9——7—c059 = ponl
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